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Abstract
The Bruggeman formalism is implemented to estimate the refractive index of
an isotropic, dielectric, homogenized composite medium (HCM). Invoking the
well-known Hashin–Shtrikman bounds, we demonstrate that the group velocity
in certain HCMs can exceed the group velocities in their component materials.
Such HCMs should therefore be considered as metamaterials.

PACS numbers: 41.20.Jb, 42.25.Dd, 83.80.Ab

1. Introduction

By definition, metamaterials exhibit behaviour which (i) either their component materials do
not exhibit (ii) or is enhanced relative to exhibition in the component materials [1]. Many types
of metamaterials may be conceptualized through the process of homogenization [2–4], paving
the way for their realization. For example, a homogenized composite medium (HCM) may
be envisaged which supports the propagation of a Voigt wave (which is a planar wave whose
amplitude varies linearly with propagation distance), although such waves cannot propagate
through its component materials [5, 6].

In this communication, we explore the enhancement of group velocity which may be
achieved through homogenization. Sølna and Milton recently considered this issue, by
estimating the relative permittivity of a HCM as the volume-weighted sum of the relative
permittivities of the component materials [7]. But that estimation is applicable only for
planar composite materials such as superlattices of thin films, and not to the more commonly
encountered particulate composite materials [2–4]. In the following analysis, we implement
the well-established Bruggeman formalism [4] to calculate the effective refractive index of
an isotropic dielectric HCM. Thereby, we demonstrate that metamaterials which support
group velocities exceeding those in their component materials may be realized as particulate
composite materials.
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2. Analysis

Consider a composite material containing materials labelled a and b, with refractive indices
na and nb, respectively. The component materials are envisioned as random distributions
of spherical particles. Provided that the diameters of these particles are small compared
with electromagnetic wavelengths, homogenization techniques may be applied to estimate the
effective refractive index of the HCM.

In particular, the well-established Bruggeman homogenization formalism [2, 4]—which
may be rigorously derived from the strong-permittivity-fluctuation theory [8, 9]—leads to the
equation

fa

n2
a − n2

Br

n2
a + 2n2

Br

+ fb
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Br

n2
b + 2n2

Br

= 0 (1)

whose solution yields nBr as the estimated refractive index of the HCM. Here, fa and fb =
1−fa are the volume fractions of the component materials. In the following, both component
materials are assumed to have negligible dissipation in the frequency range of interest.

The group velocity of a wavepacket propagating through the HCM is given as [10]

vBr = c

nBr(ω) + ω dnBr
dω

∣∣∣∣
ω(kavg)

(2)

where vBr is evaluated at the angular frequency ω = ω(kavg), with kavg being the average
wavenumber of the wavepacket, and c is the speed of light in free space. Similarly, the
respective group velocities in component materials a and b are given by
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(� = a, b) . (3)

We proceed to establish upper and lower bounds on vBr, in terms of na and nb. In particular,
we demonstrate that the inequalities

vBr > v� (� = a, b) (4)

can be satisfied for certain values of na � 1, nb � 1, dna
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> 0 and dnb
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> 0.

Differentiation of both sides of equation (1) with respect to ω yields
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Upper and lower bounds on δa and δb may be established by exploiting the Hashin–Shtrikman
bounds nL and nU on nBr [11]; i.e.,

nL < nBr < nU (7)

where
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Combining equations (6)–(8), we get

ρ� < δ� < κ� (� = a, b) (9)

where
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and
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Thus, we have
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and the group velocity in the HCM is accordingly bounded as

vL < vBr < vU (13)

with
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If the inequalities
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hold for certain component materials, then the inequalities (4) are automatically satisfied.
The inequalities (15) reduce to the particularly simple inequality

nU + ω
dna

dω
(κa + κb − 1) + κb (na − nb) < na (16)

if va = vb. The conditions

nU + κb (na − nb) < na

κa + κb − 1 > 0

}
(17)

are satisfied, for example, by na = 3, nb = 1.2 and fa = 0.9. Thus, the inequality (16) holds,
provided that the dispersive term dna

dω
is sufficiently small.
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Figure 1. The estimated refractive index nBr (solid line), the upper and lower Hashin–Shtrikman
bounds on nBr (broken dashed lines, labelled as nU and nL), and the coefficients δa and δb (dashed
lines), all plotted as functions of the volume fraction fa , when na = 5 and nb = 1.2.

3. Numerical results

Let us illustrate the phenomenon represented by the inequalities (4) by means of a specific
numerical example. Consider a particulate composite material at a particular value ω0 of ω.
At the chosen angular frequency, let na = 5, nb = 1.2, dna

dω

∣∣
ω=ω0

= 0.5/ω0 and dnb

dω

∣∣
ω=ω0

=
5.5/ω0. Significantly, material a has a high refractive index but low dispersion in the
neighbourhood of ω0, whereas high dispersion in material b is combined with a low refractive
index.

The Bruggeman estimate of the refractive index of the HCM, namely nBr, is plotted as a
function of the volume fraction fa in figure 1. Also shown are the upper and lower Hashin–
Shtrikman bounds, nU and nL, on nBr, as well as the parameters δa and δb. The Bruggeman
estimate adheres closely to the lower bound nL at low values of fa , whereas at high values
of fa the difference between nBr and its upper bound nU becomes marginal. The observed
agreement between nBr and nL at low fa reflects the fact that the lower Hashin–Shtrikman
bound is equivalent to the Maxwell Garnett estimate of the refractive index of the HCM arising
from spherical particles of material a embedded in the host material b [4]. The Maxwell Garnett
estimate is only valid then at low values of fa . As the volume fraction becomes increasingly
small, the Bruggeman estimate (nBr) and the Maxwell Garnett estimate (low-fa value of nL)
converge on nb. In a similar manner, the agreement between nBr and nU at high values of fa

is indicative of the fact that the upper Hashin–Shtrikman bound is equivalent to the Maxwell
Garnett estimate of the refractive index of the HCM arising from spherical particles made of
material b embedded in host material a; the Maxwell Garnett estimate then holds only at high
values of fa . In the limit fa → 0, the coefficients δa → 0 and δb → 1; while δa → 1 and
δb → 0 as fa → 1.

The corresponding group velocities va, vb and vBr are plotted as functions of fa in
figure 2. The upper and lower bounds on vBr as given by vU and vL, respectively, are also
displayed. Clearly, we have vBr > va and vBr > vb for fa > 0.67.

The inequalities (4) hold only over a relatively small range of parameter values. For
example, the phase space in which the inequalities (4) are satisfied is illustrated in figure 3 for
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Figure 2. The estimated group velocity vBr (solid line) and its upper and lower bounds
(broken dashed lines, labelled as vU and vL), along with the group velocities va and vb

dashed lines) in the component materials, plotted as functions of the volume fraction fa , when
na = 5, nb = 1.2, dna

dω
|ω=ω0 = 0.5/ω0 and dnb

dω
|ω=ω0 = 5.5/ω0. All group velocities are

normalized with respect to c.
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Figure 3. The shaded region indicates the portion of the α–β phase space wherein vBr > va and
vBr > vb; here, α = na

nb
and β = ( dna

dω
/

dnb
dω

)|ω=ω0 . This region was demarcated for na = 5,

dna
dω

|ω=ω0 = 0.5/ω0 and fa = 0.8.

na = 5, dna

dω

∣∣
ω=ω0

= 0.5/ω0 and fa = 0.8. With these relationships fixed for the component
material a, we find that vBr > va and vBr > vb for

(i) 1.17 < nb < 1.23 with dnb

dω

∣∣
ω=ω0

= 5.51/ω0 and

(ii) 5.45/ω0 < dnb

dω

∣∣
ω=ω0

< 5.57/ω0 with nb = 1.2.

4. Concluding remarks

We conclude that the group velocity in an isotropic, dielectric, particulate composite material—
as estimated via the Bruggeman homogenization formalism—can exceed the group velocities
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in its component materials. This metamaterial characteristic may be achieved through
homogenizing (i) a component material a with high refractive index and low dispersion with
(ii) a component material b with low refractive index and high dispersion. Neither anomalous
dispersion nor an explicit frequency-dependent model of the refractive index (unlike [7]) is
required to demonstrate this characteristic.

Improved estimates of HCM group velocity may be achieved through the implementation
of homogenization approaches which take into better account the distributional statististics
of the component materials (e.g., the strong-permittivity-fluctuation theory approach [8, 9]).
In particular, the effects of coherent scattering losses—which are neglected in the present
study—may well result in a moderation of the group velocity. Such studies are currently being
undertaken, especially in light of the recent emergence of metamaterials wherein the phase
velocity and the time-averaged Poynting vector are oppositely directed [12].
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